Vibration Analysis of FG Micro-Beam Based on the Third Order Shear Deformation and Modified Couple Stress Theories

Authors

  • Mehdi Alimoradzadeh ِDepartment of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
  • Mehdi Salehi ِDepartment of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
Abstract:

In this paper, free vibration analysis and forced vibration analysis of FG doubly clamped micro-beams is studied based on the third order shear deformation and modified couple stress theories. The size dependent dynamic equilibrium equations and both the classical and non-classical boundary conditions are derived using a variational approach. It is assumed that all properties of the FG micro-beam follow a power law form through thickness. The motion equations are solved by employing Furrier series in conjunction with Galerkin method. Also, effects of aspect ratio, power index and dimensionless length scale parameter on the natural frequencies and amplitude-excite frequency curves are investigated. Findings indicate that dimensionless frequencies are strongly dependent on the values of the material length scale parameter and power index. The numerical results of this study indicate that if the thickness of the beam is in the order of the material length scale parameter, size effects are more significant.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Vibration Analysis of FG Nanoplate Based on Third-Order Shear Deformation Theory (TSDT) and Nonlocal Elasticity

In present study, the third-order shear deformation theory has been developed to investigate vibration analysis of FG Nano-plates based on Eringen nonlocal elasticity theory. The materials distribution regarding to the thickness of Nano-plate has been considered based on two different models of power function and exponential function. All equations governing on the vibration of FG Nano-plate ha...

full text

Free Vibration Analysis of Size-Dependent, Functionally Graded, Rectangular Nano/Micro-plates based on Modified Nonlinear Couple Stress Shear Deformation Plate Theories

In the present study, a vibration analysis of functionally graded rectangular nano-/microplates was considered based on modified nonlinear coupled stress exponential and trigonometric shear deformation plate theories. Modified coupled stress theory is a non-classical continuum mechanics theory. In this theory, a material-length scale parameter is applied to account for the effect of nanostructu...

full text

Free Vibration Analysis of Sandwich Micro Beam with Piezoelectric Based on Modified Couple Stress Theory and Surface Effects

In this paper, the free vibration analysis of sandwich micro beam with piezoelectric layers based on the modified couple stress and surface elasticity theories are investigated. The Hamilton’s principle is employed to derive the sandwich micro beam with piezoelectric based on modified couple stress theory incorporating with Gurtin- Murdoch surface theory. The generalized differential quadrature...

full text

Free vibration analysis of multi-cracked micro beams based on Modified Couple Stress Theory

In this article, the size effect on the dynamic behavior of a simply supported multi-cracked microbeam is studied based on the Modified Couple Stress Theory (MCST).  At first, based on MCST, the equivalent torsional stiffness spring for every open edge crack at its location is calculated; in this regard, the Stress Intensity Factor (SIF) is al...

full text

A FSDT model for vibration analysis of Nano rectangular FG plate based on Modified Couple Stress Theory under moving load

In present paper, vibration of Nano FGM plate based on modified couple stress and First Order Shear Deformation Theories (FSDT) under moving load has been developed. Basic equations and linear strains are introduced by first order shear deformation theory and Mori Tanaka’s model is used for the plate. The module of elasticity and density are assumed to vary only through thickness of plate. Gove...

full text

Applications of higher order shear deformation theories on stress distribution in a five layer sandwich plate

In this paper, layerwise theory (LT) along with the first, second and third-order shear deformation theories (FSDT, SSDT and TSDT) are used to determine the stress distribution in a simply supported square sandwich plate subjected to a uniformly distributed load. Two functionally graded (FG) face sheets encapsulate an elastomeric core while two epoxy adhesive layers adhere the core to the face ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 10  issue 3

pages  51- 66

publication date 2017-08-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023